91ÊÓÆµÍøÕ¾ÎÛ

Published

Grinder’s Hybrid Hydro Guides Offer Speed, Precision

A hybrid guideway system on Studer's new S41 universal cylindrical grinder is designed to ensure the linear motors driving the machine’s axes are employed to maximum effect.

Share

Leaders-In background

 

Grinding has a number of inherent advantages compared to other machining processes. Speed is not one of them. That’s not to say speed isn’t important in grinding applications—quite the contrary—but in general terms, faster processing isn’t high on the list of factors that draw users to grinding technology in the first place.
 
This principle wasn’t lost on Studer when the Swiss company unveiled its new S41 universal cylindrical grinder earlier this year. Although moving the longitudinal and cross slides as fast as 66 feet per minute is a major benefit of the machine’s direct-drive linear motors, it is another feature that ensures this speed doesn’t come at the expense of precision or repeatability: a new type of guideway system called StuderGuide. According to the company, this system’s hybrid design incorporates the advantages of both hydrostatic and hydrodynamic guideways to keep the slides on-target, whether stationary or in motion. 
 
Considering the fact that the S41’s linear motors feature scales with 10-Nm resolution, one might wonder why precision and repeatability would be a concern at all. The answer is that applying linear drives to a universal grinder like the S41 generally involves a different set of priorities than applying them to other types of machines, says Hans Ueltschi, vice president of cylindrical division sales at United Grinding (Miamisburg, Ohio), which represents Studer in the United States. Compared to milling, for example, the speed of a cylindrical grinding process tends to be more inherently limited, he says. As a result, the benefits of driving axes faster generally apply more to traverse time—moving the wheel to a dressing unit, for example, or moving the slide to provide clearance for wheel indexing.
 
Consequently, a hydrostatic system that completely separates the moving element from the guideway with a consistently pressurized film of oil might seem ideal because it would eliminate friction. However, in terms of actual metal removal, a grinder’s ability to maintain a certain position or stop in the same place repeatedly is more important than traverse speed, Mr. Ueltschi says. At the speeds provided by linear drive, sliding on a film of oil with virtually no resistance might actually impede this ability. A hydrodynamic system, in which some contact with the guideway occurs when the moving element is accelerating, decelerating or stationary, would provide more resistance. However, that would come at the expense of advantages that characterize hydrostatic systems, including improved tolerance for differing pressures on the guides as well as reduced wear and maintenance.
 
In designing the S41, Studer sought to strike a balance. The result is a flat, V-shaped guideway that is partially hydrostatic and partially hydrodynamic. Although Mr. Ueltschi is tight-lipped on the exact configuration of these ways, he says combining the advantages of both systems makes the linear drives more effective.
 
Like a hydrodynamic system, StuderGuide offers damping in the direction of movement and eliminates “floating” of the slide, he explains. Like a hydrostatic system, it eliminates the “stick-slip” effect, reduces guideway wear, requires little maintenance, and tolerates differing amounts of pressure without adjustment—a useful advantage for manufacturers working with a variety of workpiece sizes and weights. Also notable is the fact that the slides rest completely on the guideways throughout the entire 37.4-inch traversing range, resulting in straightness of less than 0.0001 inch. Taken together, these features ensure that StuderGuide meets the company’s goal of freeing the linear drives and high-resolution scales to provide the precise, fast slide positioning for which they were designed, Mr. Ueltschi says.

 

MMS Leaders in CNC Machining

Related Content

Grinding

Facilitating Lean Manufacturing Through Modularity

Knowing how to subdivide machines and jobs has enabled Danobat to create a lean manufacturing process that improves its lead times by up to 25%.

Read More

Joint Ribbon Cutting at Fagor, Danobat Showrooms

Danobat and Fagor co-hosted an inaugural event for their co-located facilities in the Chicago area.

Read More

M&M Quality Grinding Bars Support High-Volume Production

PMTS 2025: M&M Quality Grinding provides precision grinding services for a variety of materials, including titanium, stainless steel, alloys and plastics.

Read More
Grinding

Chevalier Rotary Surface Grinders Provide Efficient Production

The FRG-400/600S Series is designed for heavy loads and is fully enclosed for CNC rotary surface grinding.

Read More

Read Next

Top Shops

Last Chance! 2025 Top Shops Benchmarking Survey Still Open Through April 30

Don’t miss out! 91ÊÓÆµÍøÕ¾ÎÛ's Top Shops Benchmarking Survey is still open — but not for long. This is your last chance to a receive free, customized benchmarking report that includes actionable feedback across several shopfloor and business metrics. 

Read More
Automation

AMRs Are Moving Into Manufacturing: 4 Considerations for Implementation

AMRs can provide a flexible, easy-to-use automation platform so long as manufacturers choose a suitable task and prepare their facilities.

Read More
Basics

Machine Shop MBA

  Making Chips and 91ÊÓÆµÍøÕ¾ÎÛ are teaming up for a new podcast series called Machine Shop MBA—designed to help manufacturers measure their success against the industry’s best. Through the lens of the Top Shops benchmarking program, the series explores the KPIs that set high-performing shops apart, from machine utilization and first-pass yield to employee engagement and revenue per employee.  

Read More