91ÊÓƵÍøÕ¾ÎÛ

Published

Is Additive Freeing Designers or Aiding Manufacturers?

A shift toward maximizing AM benefits for manufacturers, not only product designers and process engineers, will help AM take off.

Share

Leaders-In background

Jessica Menold, assistant professor of engineering design, manufactures silicone earbuds for single-use stethoscopes using silicone rubber molds formed from 3D printed earbuds. Photo credit: Christian Baum. All rights reserved.

I hope you are sitting down for this one: I have recently come to the conclusion that the people advancing and promoting additive manufacturing (AM), including me, may have been marketing it wrong and even marketing it to the wrong people.

Yes, AM has successfully solved the “” and has , but AM is most often advertised, marketed and sold touting the benefits of “free complexity,” design freedom, material freedom, lightweighting, bio-inspired design and so on. These are all design problems, not manufacturing problems. The AM community has been so busy freeing the designers that we forgot about aiding manufacturers. As a result, the primary channels that have emerged target product development and engineering — not the process engineers, machining professionals and myriad other people working in a manufacturing enterprise. As my cartoon namesake father would say, “D’oh!”

I’m equally guilty of this and have unfortunately been perpetuating it with my own students for nearly 25 years — sorry! My background is mechanical engineering and product design, and my views and perspectives on AM have been shaped accordingly since 3D printing technology hit the market when I was an undergraduate in engineering. Consequently, my columns have mainly focused on all of the design (and material) benefits of AM, explaining the different , and sharing the challenges with , , need for  and so on. I’ve shared insights from my own AM experiences, adventures and , and I have tried my best to identify ways that traditional manufacturing experts can help AM in hopes of welcoming them into AM and dispelling any fears of using it. Heck, my very first column was a to help AM solve all of its problems.

But a lot has changed over the past decade, particularly with metal AM technology. I have been fortunate to be at the forefront of a lot of this development while serving as co-director of a leading AM research facility at Penn State, . Needless to say, I have learned a ton about things I previously had little knowledge of — things I didn’t even know to ask or look for. I have also been fortunate to be part of for five years now, and it has been eye-opening to work with a team of industry experts that have actually designed, manufactured, qualified, certified and flown metal AM parts. We frequently joke that is the “jaded process engineer” when she and I coteach, but she has qualified an AM part for aerospace — not me! I learn something new from her every time we talk. 

Most recently, I was fortunate to be able to lead Penn State’s response to address shortages of personal protective equipment (PPE) and other supplies for healthcare professionals. I have written about my effort often, but one of the biggest “lessons learned” for me in running a team of 400 people was how far AM still needs to come to be “industrialized” in many cases. 

The MASC team grew from my network of AM and 3D printing friends and colleagues, first at Penn State, then at Hershey Medical Center, then across the Commonwealth of Pennsylvania. We used AM in every way that you can imagine and have read about, and in the end, the best uses for AM come from aiding manufacturing, not maximizing design freedom or exploiting a lattice structure. Sure, we did that, but only to save material to reduce costs and shorten print time to make an AM solution viable. Unfortunately, nine times out of 10, AM wasn’t the best, fastest, cheapest way to manufacture a part. Not even close. 

There were wins though. AM gained immediate traction within MASC when it helped 3D print fixtures and tooling to aid production and assembly, (see image) and consolidated multipiece assemblies into a single AM part to save labor costs and reduce takt time. 

AM for ? Maybe, but there is a high risk and high cost associated despite being faster. AM to mass produce ? Too expensive and too slow unless production is already at scale. ? Maybe, but only if the materials are compatible, sterilizable and adhere to . Needless to say, I learned a lot as I tried to put my AM knowledge into action, and it has reframed my thinking. Combine that with all the online AM training I’ve been presenting, and my entire mindset about what we teach has shifted. Likewise, so has my column.

If you work in production, I need your help. What are some of the primary “pain points” you experience in manufacturing? Proponents of AM talk about production aids, fixtures and the like, but what do you really wish you had next to you on the mill or lathe? On the factory floor? On the assembly line? In the paint booth? I currently have 10 ‘buckets’ in mind for how AM might aid manufacturing, and I hope to find real-life examples to both corroborate and expand my list. 

Feel free to connect on or via email at Penn State. And don’t worry, I won’t publicly share anything you send without your permission. Meanwhile, let’s start talking about how AM can aid manufacturers, not just free those product designers and engineers. 

Related Content

Five-Axis

Digital Transparency in Machining Key to Multi-Site Additive Manufacturing

Cumberland Additive’s CNC programmer in Pennsylvania spends most of his time writing programs for machine tools in Texas.

Read More
Automation

JTEKT Technology Days Showcases Synergies

The event took place following the company’s completion of its new showroom and decision to merge several of its brands under the JTEKT name.

Read More

In Moldmaking, Mantle Process Addresses Lead Time and Talent Pool

A new process delivered through what looks like a standard machining center promises to streamline machining of injection mold cores and cavities and even answer the declining availability of toolmakers.

Read More

Additive/Subtractive Hybrid CNC Machine Tools Continue to Make Gains (Includes Video)

The hybrid machine tool is an idea that continues to advance. Two important developments of recent years expand the possibilities for this platform.

Read More

Read Next

Registration Now Open for the Precision Machining Technology Show (PMTS) 2025

The precision machining industry’s premier event returns to Cleveland, OH, April 1-3.   

Read More
Automation

Why We Ask Machine Shop Leaders to Speak at TASC – The Automated Shop Conference

TASC is our industry’s premier peer-to-peer automation stage where America’s shop leaders refine the art of metalworking and CNC machining. For conference speakers, it's also an opportunity to showcase your skills and gain exposure for your business. Here are five why stepping into the spotlight at TASC could be your smartest move toward elevating your shop.

Read More
Workforce Development

Shop Tour Video: You've Never Seen a Manufacturing Facility Like This

In the latest installment of our “View From My Shop” series, explore Marathon Precision’s multi-process approach to manufacturing, where blacksmiths and hand-forged dies meet state-of-the-art CNC machining. Discover how restoring classic muscle cars and building custom art projects creates a dynamic shop culture — and draws top talent to this unique and innovative metalworking facility. 

Read More