91ÊÓƵÍøÕ¾ÎÛ

Updated Published

Putting Production on Repeat with Machine Tool Automation

Cobots and automation advances have spurred tooling and workholding innovations like Big Daishowa’s zero-point workholding system and EWA fine boring head.

Share

Leaders-In background

Alan Miller, engineering manager and product manager for Big Daishowa, said in that improvements to collaborative robot systems have opened up automation to a wider array of manufacturers than ever before. Between these cobots and automation-optimized tooling, manufacturers can now automate smaller, specific, repetitive operations with less investment in time and resources. This frees up operators to tackle high-complexity operations that require manual input, while speeding up productivity and improving safety in simpler tasks.

 

Cobots

Collaborative robots, or “cobots,” widen the range of processes compatible with automation. Cobots are designed to work alongside employees, with integrated safety features like force limits automatically stopping the cobots when they meet unexpected resistance. Improved speed control, vision systems and proximity sensors, coding simplicity and increased adaptability also enhance the functionality of these automation solutions.

As part of encouraging the use of cobots, tool manufacturers like Big Daishowa have developed optimized solutions to take advantage of their increased functionality.

Automation, One Step at a Time

A screencap of BIG KAISER's September 28, 2021 webinar, with a diagram showing the parts of the robot gripper associated with the company's Unilock solution in both unclamped and clamped positions.

The gripper of Big Daishowa’s Unilock workholding systemis optimized for use with cobots. It was designed to eliminate the tight diameter and spacing control problems of retention knobs, which had prevented automation with earlier generations of zero-point workholding. Images courtesy of Big Daishowa.

Miller points out four applications where Big Daishowa has developed tooling to support the automation revolution: workholding, grinding work driving, cleaning and fine boring.

Workholding

The company’s Unilock workholding solution includes several optimizations specifically for use with automation. Miller says the chuck mounts directly to the machine tool (as well as other places, if needed), with a single reference point for fixtures or loading parts.

Miller also says that traditional zero-point workholding systems with tight diameters and spacing controls on the retention knobs can be difficult for robots to unload. Using a robot on these systems can lead to the workholding devices locking up or not fully coming out.

To combat this, Big Daishowa flipped the system inside out for automation. The chucks from its NSA Series have the clamping systems and tapers on the table — Miller compares this to what would be underneath the pallet of a horizontal milling machine. Flat, round pucks go underneath the work pallet, where Miller says they can easily slide on and off to improve the system’s compatibility with robots. The system uses a central chuck, but users can attach four additional locator plates to have built-in angular positioning while loading the chuck.

Work Driver

Traditionally, grinding work drivers need to be manually attached to each work piece, so automation would take the form of preassembled parts with attached work drivers. Miller says Big Kaiser’s line of mechanically actuated grinding work drivers instead uses spindle rotation to lock and unlock the drive, with adjustable jaws swinging into place and grabbing onto the workpiece.

Cobots are more compatible with this mechanically activated system, and can facilitate automated loading and unloading of small shafts. If the cobot runs into any problems, rather than proceeding to cause damage like a traditional robot, it stops and waits for an operator to assess the issue.

Cleaning

Keeping the work area clean is critical to successful automation project, Miller says. Big Daishowa recommends two ways to automate this task: the chip fan and the chip blower. The chip fan is a fixed and balanced blade fan with a small, 125-mm diameter that requires high spindle speeds to be effective, while the chip blower is a folding blade fan that covers more area at lower speeds — making it suitable for larger machines and tables.



The EWA fine boring head offers automated adjustments and cutting insert wear compensation. The level of automation can be set to the user’s comfort, from adjustments to user-input values to fully automated boring from the machine tool control.

Fine Boring Heads

New opportunities for automation are not limited to cobot-optimized workholding. Miller says Big Daishowa wants to enable full automation of the fine boring process.

Removing the need for manual adjustment could reduce cycle times and the risk of human error while also improving operator safety. The company’s EWA line of finish boring heads, scheduled for release in early 2022, moves toward this goal with an internal motor for automatic tool carrier adjustments, an internal actuator for clamping the tool carrier, and Bluetooth to communicate with external devices.

Automatic cutting insert wear compensation features adjust the boring tool for potential wear compensation based on measurements from the machine touch probe and bore gauge. Automatic adjustments can also enable a single tool to bore multiple hole sizes.

Bluetooth connectivity enables differing levels of automation, depending on the user’s comfort. Similarly to the EWE, the EWA can connect to users’ smartphones and tablets. In this situation, the machine operator inputs adjustment values in the app, then the tool adjusts automatically to the set value. This keeps the operator’s knowledge of fine boring in play, while still benefiting from the automated adjustment’s safety and tooling benefits.

Connection to an external computer that is itself connected to the machine enables the boring head’s probe to transfer measurements to the computer. From here, the computer can command the EWA boring head for adjustments. This system automates the boring head, while still keeping it separate from the machine tool control.

Direct connection with the machine uses Bluetooth to enable the machine to control the EWA boring head’s adjustments. Miller says Big Daishowa is actively working with companies to develop in-machine apps that improve compatibility with this automation method.

Related Content

Setting Up the Building Blocks for a Digital Factory

Woodward Inc. spent over a year developing an API to connect machines to its digital factory. Caron Engineering’s MiConnect has cut most of this process while also granting the shop greater access to machine information.

Read More
Automation

4 Steps to a Cobot Culture: How Thyssenkrupp Bilstein Has Answered Staffing Shortages With Economical Automation

Safe, economical automation using collaborative robots can transform a manufacturing facility and overcome staffing shortfalls, but it takes additional investment and a systemized approach to automation in order to realize this change.

Read More
Automation

3 Ways Artificial Intelligence Will Revolutionize Machine Shops

AI will become a tool to increase productivity in the same way that robotics has.

Read More
Automation

Translating a Prototyping Mindset to Production

The experimental mindset that benefited BDE Manufacturing Technologies as a prototype job shop has given it an adaptable edge as a production facility.

Read More

Read Next

View From My Shop

Shop Tour Video: You've Never Seen a Manufacturing Facility Like This

In the latest installment of our “View From My Shop” series, explore Marathon Precision’s multi-process approach to manufacturing, where blacksmiths and hand-forged dies meet state-of-the-art CNC machining. Discover how restoring classic muscle cars and building custom art projects creates a dynamic shop culture — and draws top talent to this unique and innovative metalworking facility. 

Read More

Registration Now Open for the Precision Machining Technology Show (PMTS) 2025

The precision machining industry’s premier event returns to Cleveland, OH, April 1-3.   

Read More
CNC & Machine Controls

Setting Up the Building Blocks for a Digital Factory

Woodward Inc. spent over a year developing an API to connect machines to its digital factory. Caron Engineering’s MiConnect has cut most of this process while also granting the shop greater access to machine information.

Read More