Inspecting Tapers, Part 2: Toolholder Gaging
A few months ago, we discussed the calibration of conical taper masters, which are used to master taper gages. Now let's look at the parts those gages are used to inspect—toolholders.
Share





A few months ago, we discussed the calibration of conical taper masters, which are used to master taper gages. Now let's look at the parts those gages are used to inspect—toolholders.
There are many reasons for the popularity of V-flange toolholders. One advantage is that they are not self-locking but are secured in the spindle by the drawbar—an arrangement that makes tool changes simple and fast. They are also economical, because the taper itself is relatively easy to produce, requiring precision machining of only one dimension: the taper angle.
The toolholder must properly position the cutting tool relative to the spindle and, when in place, must rigidly maintain that relationship. The accuracy of the tapered surfaces on both the toolholder and the spindle is, therefore, critical.
If the toolholder's rate of taper is too great, there will be excessive clearance between the two surfaces at the small end of the taper. If the rate of taper is too small, there will be excessive clearance at the large end. Either situation can reduce the rigidity of the connection, and cause tool runout, which may show up on the workpiece as geometry and/or surface finish errors. Taper errors may also affect the amount of clearance between the flange on the tooling and the face of the spindle, which may create errors of axial positioning.
As the demands for precision machining and high speeds increase, manufacturing tolerances on spindle and toolholder tapers have gotten tighter. Nevertheless, both components are still subject to manufacturing inaccuracies and wear. In response, some companies with very high accuracy, quality, and throughput requirements—particularly in the aerospace and medical fields, and some automotive suppliers—regularly check the accuracy of toolholder tapers. This is usually done with differential air gaging, which combines the necessary high resolution and accuracy with the speed, ease of use, and ruggedness required on the shop floor.
The most common type of air gage taper tooling has two pairs of jets on opposing air circuits and is designed for a "jam fit" between the part and the tool. Jam-fit tooling does not measure part diameters, per se. Rather, it displays the diametrical difference at two points on the workpiece, as compared to the same two points on the master. If the difference at the large end of the taper is greater than the difference at the small end, as shown, the air pressure in circuit A will be lower than in circuit B: the gage will indicate this as negative taper. If the difference at B were greater than the difference at A, the gage would read positive taper. But because a differential air meter displays diametrical difference only, it will not display the part's diameter at either location. So while this type of air tooling provides a good indication of taper wear and allows us to predict a loss of rigidity in the connection, it does not tell us anything about the tool's axial positioning accuracy.
For that, we need a "clearance" style air tool. The tool cavity is sized to accept the entire toolholder taper, while the toolholder's flange is referenced against the top surface of the tool. This makes it possible to measure diameters at known heights (in addition to the change in clearance, as in the jam-fit type). An additional set of jets may be added, as shown, to inspect for bell-mouth and barrel-shap—two more conditions that reduce the contact area between the toolholder and the spindle.
Given a basic understanding of how your air gage works, both types of tooling are easy to use. Mastering is simply a matter of inserting the taper master and adjusting the zero. Measuring is even easier: Just insert the part and take the reading. Be careful when handling the heavy toolholders. Although the air tooling is very rugged, it's not totally impervious to damage.
Related Content
How to Evaluate Measurement Uncertainty
Manufacturing and measurement are closely coupled. An important consideration for the use of measurement results is the associated measurement uncertainty. This article describes common metrology terms and provides an example uncertainty analysis.
Read MoreMeasuring Torque, Thrust Force for Smart Drilling Operations
To monitor drilling operations for smart manufacturing solutions, torque and thrust force can be measured.
Read MoreThe Link Between CNC Process Control and Powertrain Warranties
Ever since inventing the touch-trigger probe in 1972, Sir David McMurtry and his company Renishaw have been focused on achieving process control over its own manufacturing operations. That journey has had sweeping consequences for manufacturing at large.
Read MoreOrthopedic Event Discusses Manufacturing Strategies
At the seminar, representatives from multiple companies discussed strategies for making orthopedic devices accurately and efficiently.
Read MoreRead Next
AMRs Are Moving Into Manufacturing: 4 Considerations for Implementation
AMRs can provide a flexible, easy-to-use automation platform so long as manufacturers choose a suitable task and prepare their facilities.
Read MoreMachine Shop MBA
Making Chips and 91ÊÓÆµÍøÕ¾ÎÛ are teaming up for a new podcast series called Machine Shop MBA—designed to help manufacturers measure their success against the industry’s best. Through the lens of the Top Shops benchmarking program, the series explores the KPIs that set high-performing shops apart, from machine utilization and first-pass yield to employee engagement and revenue per employee.
Read MoreLast Chance! 2025 Top Shops Benchmarking Survey Still Open Through April 30
Don’t miss out! 91ÊÓÆµÍøÕ¾ÎÛ's Top Shops Benchmarking Survey is still open — but not for long. This is your last chance to a receive free, customized benchmarking report that includes actionable feedback across several shopfloor and business metrics.
Read More