91ÊÓƵÍøÕ¾ÎÛ

Published

EDM’s Key Technologies Today

A representative of machine maker Chmer lists some of the features and capabilities that hold the most promise for EDM users now.

Share

Leaders-In background

There was a time when EDM machine maker Chmer (Taichung City, Taiwan) might have expected high speed milling to take the place of a significant amount of die sinker EDM work. The company developed a line of high speed milling machines to complement its sinker, wire and holemaking EDM machines in anticipation of this change. But things didn’t work out that way—illustrating, among other things, how difficult it is to predict technology adoption. On a recent trip to Taiwan, I had a chance to speak about this with Chmer Marketing Director Brad Wang.

While the ability to take fast, accurate cuts at high feed rates potentially makes milling a contender for certain complex die/mold forms that sinker EDM is used to produce, EDM is still more efficient for features such as deep cavities, fins and many thin walls. These features occur just often enough that high speed milling has not been able to unseat the established technology to any considerable extent. However, high speed milling has proven popular among Chmer’s customers nevertheless, not as a replacement for EDM but as a complement. The fast, accurate cutting is efficient for roughing complex mold forms before the sinker EDM is used to complete those features that EDM is still the best at finishing.

The technology needs and preferences of customers reveal themselves over time, Mr. Wang says. His hope is for Chmer to continue to adapt. Here are the EDM features and capabilities right now that he sees as becoming increasingly important:

1. Linear Motors. Among each of the company’s EDM types (and its milling machines) are models equipped with linear motors for axis motion. Linear motor machines cost more than machines driven by ballscrews, Mr. Wang says, but these motors save cost through reduced maintenance while improving the accuracy of the machine. Compared to conventional drives, a wire EDM machine with linear motors can generate sharper corners on precise components such as die punches. More, linear motors maintain their accuracy over time. This is not the case with ballscrews, which wear and become less precise over time due to the ongoing surface-to-surface contact.

2. Machine Monitoring. Applications of EDM often involve rows of machines all running largely unattended because the cycles are so long. The unattended nature of the process makes the machines ideal for monitoring systems permitting remote viewing of the current status of the machine as well its performance history over time. Chmer’s in-house control has enabled the company to develop its own remote monitoring system, among other special features. (Read on.)

3. Ease of Use. The in-house control has also enabled Chmer to develop a programming system enabling inexperienced users to employ EDM effectively. An operator can enter the workpiece material and diameter of the wire along with the desired roughness of the machined surface to let the control automatically set the cutting conditions and parameters required.

4. Hole Making. Among the three EDM types, holemaking looks to offer the most potential for future growth, says Mr. Wang, thanks to the long-term likely demand for cooling hole machining in turbine components by the aerospace sector. Key capabilities here include precise CNC interpolation to give small holes with a diffuser (open funnel) form at the mouth, as well as integration with B-axis indexing for the array of angles characteristic of the set of holes in a typical blade.

Chmer’s AD4L is a linear-motor equipped holemaking EDM.

Related Content

Medical

Orthopedic Event Discusses Manufacturing Strategies

At the seminar, representatives from multiple companies discussed strategies for making orthopedic devices accurately and efficiently.

Read More
Five-Axis

CNC Machine Shop Honored for Automation, Machine Monitoring

From cobots to machine monitoring, this Top Shop honoree shows that machining technology is about more than the machine tool.

Read More
Basics

How to Determine the Currently Active Work Offset Number

Determining the currently active work offset number is practical when the program zero point is changing between workpieces in a production run.

Read More
Sponsored

High RPM Spindles: 5 Advantages for 5-axis CNC Machines

Explore five crucial ways equipping 5-axis CNC machines with Air Turbine Spindles® can achieve the speeds necessary to overcome manufacturing challenges.

Read More

Read Next

CNC & Machine Controls

Setting Up the Building Blocks for a Digital Factory

Woodward Inc. spent over a year developing an API to connect machines to its digital factory. Caron Engineering’s MiConnect has cut most of this process while also granting the shop greater access to machine information.

Read More
Workforce Development

Shop Tour Video: You've Never Seen a Manufacturing Facility Like This

In the latest installment of our “View From My Shop” series, explore Marathon Precision’s multi-process approach to manufacturing, where blacksmiths and hand-forged dies meet state-of-the-art CNC machining. Discover how restoring classic muscle cars and building custom art projects creates a dynamic shop culture — and draws top talent to this unique and innovative metalworking facility. 

Read More
Automation

Why We Ask Machine Shop Leaders to Speak at TASC – The Automated Shop Conference

TASC is our industry’s premier peer-to-peer automation stage where America’s shop leaders refine the art of metalworking and CNC machining. For conference speakers, it's also an opportunity to showcase your skills and gain exposure for your business. Here are five why stepping into the spotlight at TASC could be your smartest move toward elevating your shop.

Read More