91ÊÓƵÍøÕ¾ÎÛ

Published

How To Become A Master Of Deviation

In the June 2009 issue, I wrote about how “less” can be “more,” by purchasing lower-grade master rings and discs and using their certified size—their master deviation—to improve the gaging process accuracy. This topic sparked a number of questions and some confusion, primarily because I did not have space to talk about actually applying this technique on the shop floor.

Share

Leaders-In background

 

In the June 2009 issue, I wrote about how "less" can be "more," by purchasing lower-grade master rings and discs and using their certified size—their master deviation—to improve the gaging process accuracy. This topic sparked a number of questions and some confusion, primarily because I did not have space to talk about actually applying this technique on the shop floor.

First, let’s summarize: Master rings and plug gages are classed by level of accuracy, with XXX indicating the tightest tolerances; XX, X and Y indicating intermediate grades (in descending order); and Z indicating the lowest level of accuracy. Of course, the higher the class, the more difficult the master is to manufacturer, the longer it takes to receive and the more you pay. Tighter-tolerance masters also wear more quickly. Traditionally, the rule of thumb was to buy the highest accuracy you could afford, because the best class master was assumed to ensure the best measurement results.

However, because of ISO and other standards, masters are now available with documents that certify their actual size. The difference between the nominal class size—what the master is supposed to be—and the actual size of the master is referred to as the master deviation. The uncertainty of this number is most likely smaller than the deviations you will find with a master made to a specific class size. You can use this number to improve your measurement performance using a lower-class master.

For example, a 1-inch class XXX master ring has a tolerance range, or potential error, of ±15 microinches. A 1-inch class X ring has a potential error of ±60 microinches. However, it also comes with a document that details a specific amount that the master is "off," say +55 microinches. Many gages, such as air tooling, bench amplifiers and even some good digital and dial comparators can resolve to 10 microinches, and by "dialing in" this master deviation when zeroing the gage, you may be able to squeeze an extra 40 microinches of accuracy out of a gage that is measuring a ±0.0001-inch tolerance (the difference between the ±15 microinch class XXX tolerance and the +55 microinch gage setting). Thus, you improve the process by 20 percent while paying 50 percent less for the master.

Using a dial indicator gage with a master deviation is pretty easy. If the master is off by +0.0001 inch, the setup person would adjust the gage to master at 0.0001 inch rather than zero. In effect, the operator is making the gage read what the master actually is. If a part is measured at the true nominal size, it would read 0.0 on the gage. This is even easier on many of the electronic gages in use today. Most of them have a procedure for entering the master deviation into the setup routine of the gage. Once set, the gage will show the actual deviation as seen on the certification whenever it is "zeroed."

However, there is a trade-off in that this process will require a little more work on your part. In order for this technique to work effectively on the shop floor, you and your operators will have to start keeping track of the master deviations by gage and ensure that everyone using the gages is aware of the master deviation. Processes will have to be set up to regularly measure and certify the master to its particular size. This number must be tracked by your quality department, and users must be aware of the offset and account for it. The number is apt to change annually, so this is a long-term process that has to become an integral part of your gaging routine.

However, these efforts will also pay another long-term dividend. Once you have set up a shop-wide process of using master deviations, you can start monitoring changes in the masters. Calibrations from year to year would normally show some wear in size and probably a small amount of change in the form of your masters. If over the course of a year you find that the size has changed more than 10 percent of your part tolerance—or more than 20 percent for tighter-tolerance parts—something significant has happened to your process, and you might want to question some of the parts you have measured since the last calibration.

Changing to a master-deviation-based measuring process requires a different process on the floor, but it can save big dollars in master costs and rework in the short run and provide an excellent long-term check on your manufacturing process.

 

Related Content

How to Determine the Currently Active Work Offset Number

Determining the currently active work offset number is practical when the program zero point is changing between workpieces in a production run.

Read More
CNC Tech Talks

6 Variations That Kill Productivity

The act of qualifying CNC programs is largely related to eliminating variations, which can be a daunting task when you consider how many things can change from one time a job is run to the next.

Read More
Sponsored

Selecting a Thread Mill That Matches Your Needs

Threading tools with the flexibility to thread a broad variety of holes provide the agility many shops need to stay competitive. They may be the only solution for many difficult materials.

Read More
CNC Tech Talks

Obscure CNC Features That Can Help (or Hurt) You

You cannot begin to take advantage of an available feature if you do not know it exists. Conversely, you will not know how to avoid CNC features that may be detrimental to your process.

Read More

Read Next

Registration Now Open for the Precision Machining Technology Show (PMTS) 2025

The precision machining industry’s premier event returns to Cleveland, OH, April 1-3.   

Read More
CNC & Machine Controls

Setting Up the Building Blocks for a Digital Factory

Woodward Inc. spent over a year developing an API to connect machines to its digital factory. Caron Engineering’s MiConnect has cut most of this process while also granting the shop greater access to machine information.

Read More
Automation

Why We Ask Machine Shop Leaders to Speak at TASC – The Automated Shop Conference

TASC is our industry’s premier peer-to-peer automation stage where America’s shop leaders refine the art of metalworking and CNC machining. For conference speakers, it's also an opportunity to showcase your skills and gain exposure for your business. Here are five why stepping into the spotlight at TASC could be your smartest move toward elevating your shop.

Read More